Math 579 Fall 2013 Exam 2 Solutions

1. Prove that $\sum_{i=1}^{n} i(i-3) = \frac{(n-4)n(n+1)}{3}$.

Proof by induction on *n*, natch. Base case: n = 1, LHS=1(1-3) = $-2 = \frac{(1-4)1(1+1)}{3}$ =RHS. Assume that $\sum_{i=1}^{n} i(i-3) = \frac{(n-4)n(n+1)}{3}$ holds, and add (n+1)(n+1-3) to both sides. Then $\sum_{i=1}^{n+1} i(i-3) = \frac{(n-4)n(n+1)}{3} + (n+1)(n-2) = (n+1)(\frac{n^2-4n}{3} + \frac{3n-6}{3}) = (n+1)(\frac{n^2-n-6}{3}) = (n+1)(\frac{n-3}{3}) = \frac{(n+1-4)(n+1)(n+1+1)}{3}$, as desired.

- 2. Let $a_1 = 1, a_2 = 5$, and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 2$. Prove that $a_n = 2^n + (-1)^n$. Proof by strong induction on n. Two base cases: n = 1 $a_1 = 1 = 2^1 + (-1)^1$ and $a_2 = 5 = 2^2 + (-1)^2$. Now we have $a_n = a_{n-1} + 2a_{n-2}$. Applying the inductive hypothesis to each summand, we get $a_n = 2^{n-1} + (-1)^{n-1} + 2(2^{n-2} + (-1)^{n-2}) = (2^{n-1} + 2 \cdot 2^{n-2}) + (-1)^{n-2}(-1+2) = 2^n + (-1)^n$, as desired.
- 3. Recall that F_i denotes the Fibonacci numbers, i.e. $F_1 = F_2 = 1$ and $F_j + F_{j+1} = F_{j+2}$ for $j \ge 1$. Prove that $\sum_{i=1}^n F_i^2 = F_n F_{n+1}$, for all $n \in \mathbb{N}$.

Proof by induction on *n*. Base case: n = 1, LHS= $F_1^2 = 1 = F_1F_2$. Assume now that $\sum_{i=1}^{n} F_i^2 = F_nF_{n+1}$. Add F_{n+1}^2 to both sides, that gives $\sum_{i=1}^{n+1} F_i^2 = F_nF_{n+1} + F_{n+1}^2 = F_{n+1}(F_n + F_{n+1}) = F_{n+1}F_{n+2}$, as desired.

- 4. Use induction to prove that $\frac{d}{dx}x^n = nx^{n-1}$, for all $n \in \mathbb{N}$. Proof by induction on n. Base case n = 1, we use the definition of derivative to find $\frac{d}{dx}x^1 = \lim_{\epsilon \to 0} \frac{(x+\epsilon)-x}{\epsilon} = \lim_{\epsilon \to 0} 1 = 1$. We now use the product rule as $\frac{d}{dx}(x^n) = \frac{d}{dx}(x \cdot x^{n-1}) = 1 \cdot x^{n-1} + x \cdot (n-1)x^{n-2} = x^{n-1}(1+n-1) = x^{n-1}(n)$, where we used the inductive hypothesis to conclude that $\frac{d}{dx}x^{n-1} = (n-1)x^{n-2}$.
- 5. A tree is a connected simple finite graph with no cycles. Prove that every tree on n vertices must have exactly n 1 edges. You may use freely the following result:

Theorem: Every tree with at least two vertices has at least two leaves.

Proof by induction on n. Pre-base-case: If n = 1, then the tree has no edges, so the result is true. Base case: If n = 2, then since the tree is connected the two vertices must have an edge between them, so there is exactly one edge, so the result is true.

Inductive case: Consider an arbitrary tree on n vertices, and choose a leaf vertex whose existence is guaranteed by the theorem. Deleting this vertex and its lone attached edge gives a smaller graph. The resulting graph is still connected, simple, finite, and has no cycles, hence is a tree with n - 1 vertices. By the inductive hypothesis, it has n - 2 edges. Thus, the original tree must have had n - 1 edges.